વિધાન $q \wedge \left( { \sim p \vee \sim r} \right)$ નું નિષેધ લખો
$ \sim q \vee \left( {p \wedge r} \right)$
$ \sim q \vee \left( {p \wedge \sim r} \right)$
$ \sim q \wedge \left( { \sim p \wedge r} \right)$
$ \sim q \wedge \left( {p \wedge \sim r} \right)$
$(p \wedge \sim q) (\sim p \vee q)$ એ......
અહી $*, \square \in\{\wedge, \vee\}$ એ આપેલ છે કે જેથી બુલિયન સમીકરણ $(\mathrm{p} * \sim \mathrm{q}) \Rightarrow(\mathrm{p} \square \mathrm{q})$ સંપૂર્ણ સત્ય થાય છે તો . . . .
$q \vee((\sim q) \wedge p)$ ની નિષેધ . . . . . ને તુલ્ય છે.
ધારો કે $p$ એ વિધાન $"x$ અસંમેય સંખ્યા છે$"$,
$q$ એ વિધાન $" y$ અબીજીય સંખ્યા છે $",$
અને $r$ એ વિધાન $"x $ સંમેય સંખ્યા છે $y$ અબીજીય સંખ્યા હોય તો$"$
વિધાન $- 1 : r$ એ $q$ અથવા $p$ સાથે સમતુલ્ય છે.
વિધાન $- 2 : r$ એ $(p \Leftrightarrow \sim q)$ સાથે સમતુલ્ય છે.
કોઈ પણ બે વિધાનો $p$અને $q$ માટે સમીકરણ $p \vee ( \sim p\, \wedge \,q)$ નું નિષેધ ........... થાય